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SUMMARY 

A successful and economical fractional step algorithm for the convection-dispersion-reaction equation 
is described. Exact solutions are adopted for the reaction and convection steps, the latter by the 
introduction of a moving co-ordinate system. The dispersion step uses an optimized finite difference 
algorithm which specifically accommodates the grid non-uniformity. The excellent performance of the 
algorithm is confirmed by numerical experiments together with computations of the Fourier response 
and integrated square error characteristics. 
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INTRODUCTION 

Estuarine mass transport is essentially a convective transport problem and any numerical 
solution algorithm that maintains an Eulerian framework has potential problems with 
numerical dispersion and solution oscillations. It is generally recognized that the numerical 
difficulties originate with the convective term and are particularly severe where there is poor 
spatial resolution, although there is little agreement regarding the most satisfactory solution 
algorithm. Numerous algorithms have been proposed in the literature and all three approp- 
riate numerical solution techniques-the method of characteristics, the finite difference 
method and the finite element method-have been used in a wide variety of forms. This 
paper describes a fractional step algorithm that achieves reasonable precision without 
recourse to higher order approximations. Each fractional step describes one of the three 
physical processes contributing to estuarine mass transport, respectively convection, disper- 
sion and chemical reaction. Essentially exact solutions are adopted for the convection and 
reaction steps and an optimized difference scheme is used for the dispersion step. Fourier 
mode analyses and numerical experiments confirm the excellent performance of the al- 
gorithm. 

The context of this study was mass transport in a narrow but well-mixed estuarine channel. 
In typical applications the single reach considered might be one link in a link-node model of 
estuarine mass transport. Estuarine conditions provide a severe test of any solution al- 
gorithm. Flows may vary from nothing to large values in both directions and concentration 
gradients may vary in a similar manner. A successful algorithm must accommodate this range 
of operational conditions. In dimensionless terms with the local space step Ax and the time 
step At as the characteristic length and time scales, the numerical solution is dependent on 
the flow parameter U Atlhx and the dispersion parameter E AtlAx2, where U(x, t) is the 
cross-sectionally averaged flow velocity including tidal and fresh-water components and E is 
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the longitudinal dispersion Coefficient. In a typical estuarine situation the flow parameter 
might range in magnitude up to about three and the dispersion parameter would be small 
and of order 0.01. 

FRACTIONAL STEPS 

In the numerical solution of initial problems involving a number of transport directions 
and/or interacting influences, the fractional step methodlS2 can often be used to advantage. It 
is applicable to initial value problems in a dependent variable u, that can be written as 

a U  

at 
- = L [ u ]  

where L is an operator and the sum of p separate operations 

L=L,+L,+ . . .  +Lp (2) 
The numerical solution of equation (1) over a time step At is achieved by p fractional steps, 
each of duration At/p and being numerical solutions of the consecutive initial value problems 

a U  
-= pLi[u] for i = 1 , 2 . .  . p 
at  

In this way a potentially complicated problem is replaced by a succession of simpler 
problems. The complication may be a number of transport directions and/or a number of 
interacting influences. The simpler fractional problem usually involves a single spatial 
direction and a single influence on the time history of the dependent variable. The major 
advantage of the fractional step method is the separate consideration given to each fractional 
step, allowing the adoption of a numerical algorithm appropriate for that step and not 
forcing the adoption of a single algorithm for the complete problem. The well known 
alternating direction implicit (A.D.I.) algorithm for the numerical solution of propagation 
problems in two spatial dimensions is an example of the fractional step method. 

Estuarine mass transport for a variable cross-section but well-mixed, one dimensional 
channel is described by the equation 

(3)  

a a a 
at ax ax 
- (AC) + - (QC) = - (AE (4) 

where C(x, t) is the slowly-varying concentration of the dispersive substance, t is time, x is 
the longitudinal co-ordinate along the estuarine channel, Q(x, t) is the known channel 
discharge, A(x, t) is the cross-sectional area of the channel, K is the linear reaction rate 
coefficient for the particular substance and S is a source or sink for that substance. 
Separating out component terms, using the continuity equation 

$A aC 
ax ax 

for the channel flow, neglecting the small non-linear term - - and assuming E is constant 
reduces equation (4) to 
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which is the classical one-dimensional convection-dispersion-reaction equation. 
In the context of a fractional step method, equation (6) becomes 

where 
L,[C] = -KC - s 

Q aC L”[C] = - - - 
A ax 

The separate fractional steps describe the three physical processes contributing to the 
estuarine mass balance, respectively reaction, convection and dispersion. The specific advan- 
tage of the fractional step method in allowing separate numerical solution algorithms for 
each step immediately identifies the convection step as the potential source of problems. 
Successful numerical algorithms for the reaction and dispersion steps are available but 
numerical algorithms for convective transport problems frequently encounter serious numeri- 
cal dispersion and solution oscillations. ‘The fractional step method allows specific considera- 
tion to be given to this problem without the need to simultaneously accommodate the reaction 
and dispersion steps. 

REACTION STEP 

The reaction step is the initial value problem 

3(KC + S) 
ac -=- 
at 

from n At to (n  +?) At. A numerical solution of this step is unnecessary as an analytical 
solution is a~a i l ab le :~  

1 1 -exp (-K At) 
K A t  

Cn exp (-K At) - S At Cn+f = 

Problems with the square bracketed term for K equal to zero or very small may be 
accommodated by use of the series expansion 

1 -exp (-K At) K At  ( K  At)” ( K  At)’ 
= 1--+--- . . .  

K At 2! 3! 4! 

Both K and S typically vary slowly with time, if at all, and little difficulty is introduced by 
assuming constant values over each time step. 

CONVECTION STEP 

The convection step is the initial value problem 
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from ( n  ++)At to ( n  +$)At. Using the method of characteristics, this partial differential 
equation is equivalent to the pair of ordinary differential equations 

-0 
dC 
dt 
-- 

and 
dx Q __ = 3 -  
dt A 

Hence concentration is constant along characteristic lines in the solution field described by 
equation (16). The exact nature of this solution can only be realized by following the 
characteristics. Reference back to a fixed Eulerian grid transforms the problem to one of 
interpolation for C between nodes at time ( n + & ) A t ,  which in turn introduces numerical 
dispersion and solution oscillations as demonstrated by Fromm4 and Holly and Preissman.’ 

An exact solution must follow the characteristics, requiring the adoption of a moving 
co-ordinate system defined by integration of equation (16). In general both Q and A vary 
with position and time in a manner normally predicted by a coupled numerical hydrodynamic 
model on a uniform Ax, At grid. The characteristic paths may be followed by numerical 
integration of equation (16) using the Runge-Kutta method with Q and A determined by 
linear spatial and temporal interpolation from the normally uniform grid of the numerical 
hydrodynamic model. Only where Q and A are both constant throughout the solution field 
are the characteristic lines parallel and can a uniform grid be retained. This is not the usual 
situation for a real estuary and a spatially non-uniform grid is a direct consequence, as 
sketched in Figure 1. With this moving co-ordinate system, the numerical solution for the 
convection step becomes 

(17) c;++ = c ,n+t  

the subscript i identifying x,, the spatial position of the ith node in the moving co-ordinate 
system. 

There is little difficulty in accommodating the boundary conditions in the context of the 
moving co-ordinate system even though they are specified at fixed positions. In parabolic 
problems such as this a clear distinction must be made between inflow and outflow 
boundaries. For inflow boundaries the boundary conditions must be specified to the solution 
field and a new node is initiated at the boundary each time step. In contrast, outflow 

1 I Dispersion j5 iep I 

Figure 1. Fractional step grid 
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boundaries are computed from the solution field by means of the outflow characteristic to the 
boundary node at the new time. This is essentially the same procedure that is followed for an 
Eulerian grid. 

DISPERSION STEP 

The dispersion step is the initial value problem 

from (n+$)At to (n+1) At. Dispersion is frequently the least important of estuarine 
transport processes and reasonably accurate numerical solutions over a uniform grid are 
quite straightforward. In the estuarine environment however the convective transport (i.e. U 
or Q/A) is not constant but varies with position and time. As a consequence, the moving 
co-ordinate system adopted for the convection step will give rise to a generally non-uniform 
but still rectangular grid over which the dispersion step must be accommodated, as shown in 
Figure 1. 

It is apparent, just from arguments of symmetry, that the asymmetry of the grid must be 
considered in the development of a suitable numerical algorithm. An appropriate algorithm 
is described in a companion paper.6 The asymmetric grid on which the algorithm is based is 
sketched in Figure 2. Centered Taylor series expansions are written for each of the six nodes 
of the local double cell and the following lowest-order finite difference equation was 
established by elimination among the nodes: 

E' 2 4  2E' E' 
2 l + A  l + A  2 1-A 1-A 

where A is the local grid asymmetry defined as (x, - ~ , - ~ - A x ) / 2 ,  Ax being defined as 
(qrl - qd1)/2, E' is written for E AtlAx" and 

4 = ( 1 - A ") p/2 + (E At/Ax2) 6 (20) 

where p and 6 are independent weighting parameters associated with the time and space 
derivatives in equation (18). The weighting parameters p and 6 appear in the discrete 
equation only in the combination indicated by equation (20), so that they are not indepen- 
dent and may be represented by a single parameter 4, which is also dependent on the 

A x  A x  
4 _ _  - _  P 

Figure 2. Asymmetric grid for dispersion step 
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asymmetry and dispersion parameters. Noting that # is essentially a free parameter whose 
magnitude does not affect either consistency or convergence of equation (19), it has been 
shown by Sobey6 that (b can be chosen such that the accuracy of the algorithm is optimized, 
in the sense that the integrated square error is a minimum. The parameter # for the 
optimized algorithm is a function of the dispersion parameter and the magnitude of the 
asymmetry; the #(A, E Atlax”) surface is presented in Reference 6. This procedure accommo- 
dates grid asymmetry and maintains reasonable accuracy without recourse to higher order 
approximations. Numerical experiments and computations of the Fourier response factor 
described also in Reference 6 confirmed the performance of this optimized asymmetric 
algorithm. 

ADDITION AND REMOVAL OF NODES 

In response to a space and time variable flow field, the moving co-ordinate system adopted 
for the convection step can result in convergence and divergence of nodes to such an extent 
that it becomes computationally desirable to add or remove certain nodes. In simultaneously 
accommodating the boundary conditions, it is first necessary to keep track of those nodes 
remaining within the solution field. Nodes are initiated at inflow boundaries and propagate 
from the solution field at outflow boundaries. Convergence of nodes within the solution field 
may result in more resolution in a particular region then is really necessary to adequately 
describe the local response. Alternatively, divergence of nodes may result in insufficient 
resolution of the local response. In both cases the local asymmetry may become too extreme 
to be reasonably accommodated by the dispersion step. 

Removal of nodes poses no computational problems but the addition of nodes must use 
linear interpolation. Some rational basis for the addition and removal of nodes is necessary, 
for which appropriate criteria would be the simultaneous maintenance of adequate resolution 
and moderate asymmetry. 

If dx is defined as the target space step judged necessary to achieve adequate overall 
resolution of the physical problem, then generalized acceptance criteria for local node 
spacings can be expressed as 

r dx < Ax < a  dx 
(l-Amax) A x < x ~ - x ~ - I < ( ~ + A , ~ , )  AX 

where Ax is (q+l-x,-l)/2 as above, and suitable values for r, a and A,,, are 0-5,2.0 and 
+0.75, respectively. Nodes are added or removed from the solution field as necessary to 
satisfy both conditions. 

In a general sense it should be noted that convergence and divergence of nodes within the 
solution field would normally enhance the performance of the algorithm. Sharp gradients of 
concentration are frequently a consequence of nodal convergence and the additional spatial 
resolution is certainly an advantage here. The reverse is normally the case with nodal 
divergence. This natural accommodation of spatial resolution is not essential to the perfor- 
mance of the fractional step algorithm but it is certainly an additional advantage of the 
approach. 

FOURIER MODE ANALYSIS 

It is well recognized that any numerical algorithm is most successful in accommodating the 
longer spatial wave lengths and often quite inadequate for shorter wave lengths. This is a 
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problem with all discrete approximations, regardless of the numerical method adopted, but it 
is not normally troublesome if there is adequate spatial resolution. However, sharp concen- 
tration gradients are frequently encountered in estuarine mass transport and there is conse- 
quently considerable interest in the short wave length performance. No numerical algorithm 
can resolve spatial Fourier components with wavelengths less than L, = 2 Ax or wave 
numbers a = 2v/L greater than a, = rrlAx, termed the Nyquist limit. The performance of 
wave numbers up to the Nyquist limit is best described by a Fourier mode or wave 
deformation analysis, which compares Fourier series solutions to both the partial differential 
equation and the numerical algorithm. 

The physical solution is the solution to the partial differential equation (6), represented as 
the real part of the Fourier series 

where pm (=2~lT,, T,,, being the wave period) is the wave angular frequency and a,,, 
(=2v/L,, L, being the wavelength) the spatial wave number of the mth Fourier component. 
Equation (6) is linear, so that only one component of equation (23) need be considered at a 
time. Substitution of a single Fourier component, C" exp [i(@ +ax)], into equation (6) 
establishes the dispersion relationship for the physical wave 

p =-aU+i[a2E+K] 
or 

p At=(aAx)----- At+i[ (a AX)' %+ K A ~ J  
Ax Ax 

where U is written for QIA. 

also represented as the real part of a Fourier series 
The numerical solution is the solution to the complete fractional step algorithm which is 

C; = C C: exp + amx)I 
m 

along the lines of equation (23) but allowing the angular wave frequencies PL to  be complex 
and different from 0, for the physical solution. Equations (12), (17) and (19) are also linear 
so that only one component of equation (25) need be considered at a time. Equations (12) 
and (17) are exact and numerical error is introduced only through the dispersion step. 
Substitution of a single Fourier component, C" exp [i(P't + ax)], into equation (19) gives 

zE AtlAx2 
exp (ip' At) = 1 + 

cos (a AX) - +Z 
where 

exp (-ia Ax) 2 exp (i Aa Ax) exp (ia Ax) + - Z =  
l + A  1-A2 1-A 

This is the equivalent dispersion relationship for the numerical or computed wave for the 
complete fractional step algorithm. 

The ratio of the computed solution to the physical solution after a specified time is called 
the propagation factor 27, after Leende r t~e :~  

exp [i(P't + ax)] 
exp [i(Pt +ax)] 

T =  = exp [i(@' - @)t] 
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Leendertse’s terminology referred to long wave propagation and T can more appropriately 
be termed a Fourier response factor in the present context. Leendertse’s choice of time scale 
was 27r/p for long wave propagation but p is complex in the present context and time must 
be real and positive. An appropriate choice for time in equation (27) is 2 ~ / R e ( @ ) =  
27r/(-aU) as the present problem is convection-dominated. Note that this time is indeed 
positive because the positive direction for U opposes the positive direction implicit in the 
Fourier series expansions. Where T equals one, the solutions of the fractional step algorithm 
and partial differential equations are identical. The proximity of T to unity over the complete 
wave number spectrum is an established and convenient measure of the precision of a 
numerical algorithm. 

The Fourier response factor thus defined depends on four dimensionless parameters: the 
flow parameter U At/Ax, the dispersion parameter E At/Ax2,the asymmetry A and the 
dimensionless wave number aAx = 27r/(L Ax). For a specific local numerical solution, the 
flow parameter, the dispersion parameter and the asymmetry are constant and the complete 
spectrum of behaviour is established by varying the dimensionless wave number @Ax, or 
more commonly the dimensionless wave length LlAx, over the full range. The dimensionless 
wave number or wavelength is a measure of the steepness of the concentration gradient. A 
small value of LlAx implies a steep gradient and this is where problems are anticipated, 

A typical result is shown in Figure 3 for a moderate flow parameter of 0-5 and a typical 
dispersion parameter of 0.01. The reaction parameter K At and the sourcelsink parameter 
S A t  are usually small and have little influence on the performance of any numerical 
algorithm for the convection-dispersion-reaction equation. They were both set to zero. The 
parameter of these curves is the asymmetry and the solid lines show the variation in the 
Fourier response factor for asymmetries in the range 0.0 to *0-9. The phase performance is 
excellent throughout but there is some small amplitude decay at very short wavelengths as 
the asymmetry becomes quite extreme. The dashed curve is included to give some perspec- 
tive to the performance of the fractional step algorithm. It is the Fourier response for a linear 
space-time finite algorithm’ for the same flow and dispersion parameters but for a uniform 
grid (A =O.O). The discrcte equations for this algorithm are identical with the finite 
difference scheme of Stone and Brian’ so that this result represents potentially the best 
available numerical algorithm on an Eulerian grid that maintains the lowest possible order of 
approximation. Higher order approximations on an Eulerian grid may yield better results 
than the dashed curve but at an added computational cost. The lowest order Eulerian grid 
algorithm is a reasonable comparison with the fractional step algorithm, which is also a 
lowest order approximation. The computational costs are certainly similar. Although the 
amplitude response of the Eulerian grid algorithm is comparable, the phase response 
deteriorates quite markedly at short wavelengths. The poor phase response has been 
identified’ as the source of numerical dispersion and solution oscillation problems with such 
algorithms, as is further discussed below. 

A single diagram like Figure 3 gives no indication of an algorithm’s performance over the 
full operational range. The integrated square error6 

S = [[Re (T ) -  112 d (a  Ax) 

is a single number measure of the performance of a numerical algorithm. The difference 
Re (T) -  1 should be small under ideal circumstances and S is an objective and dimensionless 
measure of the overall error over all possible wave numbers. The performance of any 
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Figure 3. Fourier response factors for fractional step aigorithm and Eulerian grid 

numerical algorithm for the convection-dispersion-reaction equation is most dependent on 
the flow and dispersion parameters and Figure 4 shows the integrated square error for the 
fractional step algorithm as a function of U At/Ax and E At/Ax2 over a large part of the 
active parameter range. Once again the reaction and source/sink parameters have been set to 
zero. These two parameters have little influence on numerical performance and will not be 
further considered here. They are very significant, however, in the real environment. 

Where the solution space remains convection-dominated (E At/Ax2 5 0.1), the integrated 
square error is very small and the performance of the fractional step algorithm must be rated 
as excellent. As the dispersion parameter increases beyond 1.0, the solution space becomes 
dispersion-dominated and the integrated square error increases rapidly, especially at low flow 
parameters where the dispersion dominance is more pronounced. A higher order approxima- 
tion for the dispersion step might be necessary in this region of solution space but the present 
algorithm was not developed for a dispersion-dominated flow which would be very rare in an 
estuarine context. The equivalent result for the Eulerian grid algorithm introduced above is 



576 R. J. SOBEY 

N 

61 

N 

N 
X 
4 
\ +J 
$ 7  

0 

r 3  
0 
J 

'p 

3 

2 

I 

0.5 1.0 1.5 2.0 0.0 

U A t / A x  
Figure 4. Integrated square error for fractional step algorithm 

0.0 0.5 1.0 1.5 2.0 

U A t / A x  
Figure 5. Integrated square error Eulerain grid 



FRACTIONAL STEP ALGORITHM 577 

shown in Figure 5 and quite clearly demonstrates the markedly better performance of the 
fractional step algorithm where the solution space is dominated by the convection. The 
fractional step algorithm also performs better in much of the dispersion-dominated region of 
solution space. The response trends at very low and very large flow parameters are also 
noteworthy. There is a singularity in the Fourier response factor at U AtlAx = 0.0 that is a 
consequence of the dependence of the time scale on the inverse of the flow parameter. This 
is responsible for some crowding of the isolines of S against the left-hand axis. The 
integrated square error response as U AtlAx increases is particularly interesting in the 
convention-dominated region. For the fractional step algorithm the integrated square error 
increases very slowly but remains everywhere very small. For the Eulerian grid algorithm the 
integrated square error increases moderately rapidly towards the right, indicating significant 
deterioration in performance as the flow parameter increases. 

NUMERICAL EXPERIMENTS 

The final evaluation of the fractional step algorithm was a set of numerical experiments 
comparing the performance with an analytical solution to equation (6). Reaction and 
sourcelsink terms were neglected in these tests and the context is the convection and 
dispersion of an instantaneous point source of mass M at time zero. The analytical solution is 

M (x - z)” 
C(x, t )  = 

p A J ( 4 r E t )  

where X is the centroid of the pollutant cloud estimated from integration of 

dX 
dt 
- = U(X, t) 

subject to initial conditions X = 0 for x = 0, t = 0. For U(x, t )  constant, X = Ut. In equation 
(29), p is the mass density of the water and A the constant cross-section of the channel. 
Equation (29) describes a Gaussian distribution whose centre of mass convects at speed U, 
whose peak concentration decays as (Et)-1’2 and whose half width increases as (Et)lt2. 

For the numerical experiments the initial conditions cannot be set at time zero as an 
instantaneous point source cannot be resolved by a computational grid. The initial conditions 
have been defined at time to when the half width of the distribution has grown to B Ax, 
where B is a dimensionless constant and a measure of the steepness of the initial profile. The 
peak concentration at this time has been set at 1.0. The half width of the distribution is the 
distance b such that 

C(Z f b, t )  = iC(X, t )  (31) 

i.e. the distance from the peak concentration to the points where the concentration has fallen to 
half the peak value. From equation (29) 

4 E t  b2=- 
In 2 

The half width is a more identifiable dispersion length scale than the standard deviation 
(4Et)’”, which appears naturally in equation (29). 
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Figure 6.  Steady flow numerical experiment for fractional step algorithm 

For the numerical experiments included as Figures 6 to 8, the dimensionless initial half width 
is 0.5, which is quite extreme and almost beyond the resolution capabilities of the grid. Any 
numerical problems at short wavelengths will certainly be exposed by these initial conditions. 
The dispersion parameter for these experiments is 0.01, a typical value and sufficiently small 
that convection remains the dominant physical transport process. Figure 6 is a result for 
steady flow on a uniform grid (A = 0.0). The flow parameter is 0.5 and the analytical and 
numerical solutions are compared after twenty and forty time steps. The peak concentration 
is slightly overpredicted at both times but the overall agreement is excellent. Figure 7 is the 
equivalent result at the same flow parameter for the Eulerian grid algorithm introduced 
above for comparative purposes. This result illustrates the classic problems of numerical 
dispersion and solution oscillations for Eulerian schemes, that were related above to the poor 
phase response of the algorithm. A comparison of Figures 6 and 7 readily confirms the 
excellent performance of the fractional step algorithm. 

The final result, Figure 8, simulates an unsteady estuarine flow with 

U ( X ,  t )  = U, + UT sin (wt - kx)  (33) 

U, is a constant fresh-water component, UT is the amplitude of the periodic tidal compo- 
nent, k is the wave number and o the angular frequency of the tidal wave. The parameters 
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Figure 7. Steady flow numerical experiment for Eulerian grid 
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Figure 8. Unsteady flow numerical experiment for fractional step algorithm 

were chosen as representative of estuarine conditions; the fresh-water flow parameter 
U,At/Ax was set at 0.5, the tidal flow parameter U,At/Ax at 1.0, the wave number at 
2~ / (750Ax)  and the angular wave frequency at 2d(50At). The initial conditions and 
dispersion parameter are as before. Under these conditions the flow changes direction 
periodically and varies with both position and time throughout the flow field. Under such 
conditions the grid asymmetry also varies with both position and time, providing a quite 
demanding test of the performance of the fractional step algorithm. The Figure 8 result is 
very good. There remains, as in Figure 6, some overprediction at the peaks which is a direct 
consequence of the predominance of short wave lengths in the quite extreme initial 
conditions. Less extreme initial conditions, a larger half width and/or a smaller space step, 
lead to an even better result. 

DISCUSSION 

There is an extensive literature on the numerical solution of equation (6), especially the 
primitive form that drops the reaction terms. It is a central problem in heat transfer (forced 
convection), mass transfer (pollutant transport in estuaries and rivers) and momentum 
transfer (Navier-Stokes equations) but the source of the numerical difficulties remains 
unchanged, being the convective term where the flow parameter is large (of order 1) and the 
dispersion parameter is small (<< 1). The potential consequences are numerical dispersion and 
solution oscillations. 

A number of recent reviews"," have attempted to bring some perspective to the 
literature. In particular, Gresho and Lee lo concentrate on Eulerian, finite element al- 
gorithms but their comments are generally relevant to all Eulerian representations (finite 
element, finite difference and method of characteristics). Their conclusions are clear, timely 
and compelling. They argue that solution oscillations ('wiggles') are symptomatic of a deeper 
numerical and/or physical problem in the solution formulation. Algorithms specifically 
designed to smooth the oscillations on coarse grids are rejected as the smoothed numerical 



580 R. J. SOBEY 

solutions do not necessarily represent solutions of the original partial differential equation. In 
this context, considerable attention was given to ‘smart’ upwinding which 
yield exact solutions at the nodes for steady-state convection- dispersion through knowledge 
of an exact local solution to the partial differential equation. Sobey and Vidler14 have shown 
that a similarly exact approach is not possible for the transient convection-dispersion 
equation; Gresho and Lee reach the same conclusion from a more qualitative viewpoint. They 
argue that the solution oscillations are suppressed by numerical dispersion, so that upwinding 
is a reasonable approach only where both the flow parameter and the grid size are small, 
which is not a common situation. Despite the extensive literature, Gresho and Lee recom- 
mend the exclusive use of the conventional Galerkin finite element method (rather than 
inconsistent weighted residuals formulations) coupled with judicious mesh selection and 
refinement, taking maximum advantage of the flexibility (and high overheads) of common 
finite element software and living with solution oscillations. 

It is clear that lowest order Eulerian algorithms (finite difference, finite element, method of 
characteristics) are unsatisfactory unless the grid is particularly fine, especially where 
concentration gradients are sharp. Higher order algorithms will improve the precision but 
there is a computational cost and (smaller) solution oscillations will persist. The numerical 
difficulties originate from discrete approximations to the convective term in an Eulerian 
framework. These difficulties are specifically avoided in the present fractional step algorithm 
by the adoption of the moving co-ordinate system for the convection step leading, through 
the method of characteristics, to an exact solution. This convection step introduces no 
numerical dispersion and no solution oscillations. The only potential error source is the 
prediction of the characteristic paths, but this is not a new problem as an equivalent 
computation is implicit in any Eulerian algorithm. The present formulation is in fact 
potentially superior as it is decoupled from equation (6). In the numerical integration of 
equation (16), Q and A are interpolated from the results of a preceding (fixed grid) 
hydrodynamic stage which may use a finer grid than the mass transport stage, although this 
will rarely be necessary for estuarine flows where Q and A are slowly varying functions of 
position and time for typical space steps (5000 m) and time steps (15 min). This aspect of the 
fractional step algorithm could be used to advantage in potential applications to rapidly 
reversing flows and to recirculating flows in two spatial dimensions. 

In addition the fractional step algorithm is computationally efficient. Although there are 
three steps, none are numerically complicated. The reaction step, equation (12), is an explicit 
analytical result. The convection step has three stages, the first being the numerical 
integration of equation (16) to predict the characteristic paths using a Runge-Kutta al- 
gorithm of order consistent with the available predictions of Q and A;  a first order algorithm 
was used in the successful predictions presented as Figures 6 and 8. The second stage, 
equation (17), is quite trivial and the third stage is the addition and removal of nodes. The 
dispersion step uses a lowest order algorithm whose accuracy (measured by the integrated 
square error) has been optimized for the asymmetric grid. The multi-step approach to each 
time step potentially increases the computational time with respect to a single step, lowest 
order Eulerian algorithm but this must be balanced against the significantly superior accuracy 
of the fractional step algorithm and its potential to maintain this precision on a coarse grid. 
Some relative measure of the computational efficiency of the fractional step algorithm is 
available from a direct comparison with two finite element algorithms from Reference 8. The 
test problem is the steady flow situation in Figures 6 and 7, the solution field comprising 
forty-five space steps and forty time steps. Both finite element algorithms are rectangular 
space-time elements; the first is the lowest order algorithm with CO-’ nodal continuity and 
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linear shape functions (on which Figures 3 and 7 are based) and the second is a higher order 
algorithm with C”’ nodal continuity and first-order Hermitian shape functions. C.P.U. times 
on a DEC 1091 mainframe computer were 13-3,30.4 and 237s, respectively for the 
fractional step algorithm and the two finite element algorithms. The computational efficiency 
of the present fractional step algorithm is clear. Even allowing for the considerable software 
overhead in common finite element software, the fractional step algorithm is at least as 
efficient as the lowest order finite element algorithm which is significantly less acurate, and 
an order of magnitude more efficient than the higher order finite element algorithm which 
approaches comparable accuracy. 

CONCLUSIONS 

A successful and economical numerical solution algorithm has been developed for estuarine 
mass transport without recourse to higher order approximations. The algorithm uses the 
fractional step method, separating the convection-dispersion-reaction equation into consecu- 
tive fractional steps, reaction, convection and then dispersion. Essentially exact solutions are 
used for the reaction and convection steps, namely a local analytical solution for the reaction 
step and the method of characteristics along a moving co-ordinate system for the convection 
step. The dispersion step is accommodated by a lowest order but error optimized finite 
difference algorithm on the non-uniform grid that is a consequence of the moving co- 
ordinate system introduced in the convection step. 

The convection step of the algorithm effectively eliminates numerical dispersion and 
solution oscillation difficulties that afflict many published algorithms, especially those that 
maintain an Eulerian grid. The Fourier response and integrated square error characteristics, 
together with numerical experiments, all confirm the excellent performance of the complete 
fractional step algorithm. 
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